
Frustum-Traced Raster Shadows: Revisiting Irregular Z-Buffers

Chris Wyman∗ Rama Hoetzlein
NVIDIA

Aaron Lefohn

Figure 1: (Left) Our 32 sample per pixel hard shadows in the 613k triangle Chalmers Citadel (16 ms at 1080p). (Center) Compared with
a filtered 80922 shadow map, we avoid temporal and spatial aliasing and eliminate light leaking. (Right) 32 sample per pixel shadows from
the intricate, 3.8M triangle tentacles model (38 ms at 1080p).

Abstract

We present a real-time system that renders antialiased hard shad-
ows using irregular z-buffers (IZBs). For subpixel accuracy, we
use 32 samples per pixel at roughly twice the cost of a single sam-
ple. Our system remains interactive on a variety of game assets and
CAD models while running at 1080p and 2160p and imposes no
constraints on light, camera or geometry, allowing fully dynamic
scenes without precomputation. Unlike shadow maps we introduce
no spatial or temporal aliasing, smoothly animating even subpixel
shadows from grass or wires.

Prior irregular z-buffer work relies heavily on GPU compute. In-
stead we leverage the graphics pipeline, including hardware con-
servative raster and early-z culling. We observe a duality between
irregular z-buffer performance and shadow map quality; this allows
common shadow map algorithms to reduce our cost. Compared to
state-of-the-art ray tracers, we spawn similar numbers of triangle
intersections per pixel yet completely rebuild our data structure in
under 2 ms per frame.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: shadows, irregular z-buffer, frustum tracing

1 Introduction

While conceptually simple, real-time rendering of hard shadows re-
mains an enormous challenge. Most modern applications use vari-
ants of shadow mapping [Williams 1978]. But due to discretiza-
tion and sampling mismatches between eye- and light-space, robust

∗e-mail:chris.wyman@acm.org

and artifact-free results remain elusive even with high quality filter-
ing [Annen et al. 2008] and cascades [Lauritzen et al. 2011].

We describe the evolution of our system, designed with a simple
goal: interactive, sub-pixel accurate hard shadows at usable reso-
lutions on content representative of modern workloads. We began
without any preconceptions except that shadow maps induce alias-
ing, potentially a more challenging problem. While desirable, ex-
tendability to soft shadows was not a design goal; our primary goal
was robust artifact-free shadows, with a secondary aim of speed.

To avoid aliasing, we only considered analytical shadow tech-
niques that sample in eye space at or below the pixel level. This
leaves three broad algorithmic classes: ray tracing [Whitted 1980],
shadow volumes [Crow 1977], and irregular z-buffers [Johnson
et al. 2005]. Fundamentally, all analytic approaches perform ray-
triangle intersections; the key difference is how tests are spawned.
Ray tracers query visibility along individual rays, irregular z-
buffers rasterize in light space, and shadow volumes indirectly de-
termine ray-triangle occlusion by testing shadow boundaries.

We pursued variants of irregular z-buffers (IZBs), which appeared
the most natural fit for today’s raster pipelines. Ray tracing requires
additional acceleration structures, and shadow volumes either re-
quire object-space silhouette detection or introduce complex hier-
archies [Sintorn et al. 2014] to accelerate brute force, per-triangle
volumes.

Little research has explored efficient algorithms for IZBs. Initial
work proposed major hardware changes [Johnson et al. 2005] and
alternative data structures [Aila and Laine 2004]. Later work [Arvo
2007; Sintorn et al. 2008] showed hardware implementations using
GPU computing capabilities rather than the graphics pipelines. Pan
et al. [2009] improved quality, demonstrating antialiased shadow
boundaries. To our knowledge, nobody has eliminated the key
problems with irregular z-buffering: poor scalability and large per-
formance variations between frames.

We demonstrate that IZB shadows scale to multi-million triangle
models and HD resolutions yet remain interactive (see Figure 1).
Initial prototypes required nearly 2 seconds for complex models
like the tentacles. By simplifying and streamlining the data struc-
ture and leveraging existing strengths of the graphics pipeline we
achieved two orders of magnitude better performance. A key in-

sight: we observe a duality between irregular z-buffer performance
and shadow map quality. Regions that alias with shadow mapping
have lower performance with IZBs. This allows decades of research
improving quality and consistency of shadow maps to help improve
irregular z-buffer performance.

Additional contributions of our system include:

• Demonstration of alias-free shadows on realistic content with
consistently interactive performance. Cost is under 8 and 24
ms for game scenes with 1 and 32 samples per pixel (spp).

• An efficient IZB implementation relying on existing hardware
in the graphics pipeline to improve culling beyond that avail-
able to implementations using only GPU compute.

• An efficient extension of single sample irregular z-buffers to
render 32 spp shadows.

• An extensive performance evaluation with quantified gains for
individual optimizations.

2 Why Irregular Z-Buffers?

Decades of shadow research provide developers many algorithmic
choices [Eisemann et al. 2011; Woo and Poulin 2012]. Until re-
cently, the choices in interactive contexts were limited to shadow
volumes [Crow 1977] and shadow maps [Williams 1978].

Shadow volumes generate pixel-accurate shadows by constructing
and testing the boundary of shadowed regions. This proves diffi-
cult to do robustly and renders invisible ”shadow quads” that con-
sume significant fill rate. With reductions to these problems (e.g.,
McGuire et al. [2003] and Lloyd et al. [2004]) some games shipped
using shadow volumes, but most developers still avoid them.

Shadow maps are easily implemented and efficiently run on GPUs,
but regular sampling of visibility causes spatial and temporal alias-
ing. Filtering [Reeves et al. 1987] and using statistical models
[Donnelly and Lauritzen 2006; Annen et al. 2008] partially hide
aliasing, but often introduce other artifacts. Distorting the light
frustum [Stamminger and Drettakis 2002], adaptively refining [Fer-
nando et al. 2001], or fitting multiple shadow maps [Lauritzen et al.
2011] improve sampling quality but can introduce overhead, reduce
robustness, and still exhibit aliasing.

On the cusp of interactivity, ray tracing [Whitted 1980] may pro-
vide another alternative. Hardware acceleration improves perfor-
mance [Lee et al. 2013], but adoption rates are unclear. Ray query
costs strongly depend on existence of quality acceleration struc-
tures [Aila et al. 2013], which remain expensive to build. Concur-
rent work [Mittring 2014] suggests existing GPUs may suffice for
game-quality ray tracing, though their grid-of-lists structure resem-
bles IZBs more than standard bounding volume hierarchies.

Irregular z-buffers [Johnson et al. 2005] provide another option
within existing graphics pipelines. Shadow maps use a light-space
z-buffer; IZBs instead use a light-space A-buffer [Carpenter 1984],
with each texel storing all pixels potentially occluded by geometry
in that texel. While a grid-of-lists structure increases complexity
over shadow maps, today’s GPUs construct and traverse linked-lists
efficiently [Yang et al. 2010]. Key problems with IZBs include poor
scalability and high performance variability. Prior GPU implemen-
tations [Sintorn et al. 2008; Pan et al. 2009] typically rendered at
5122 with models under 100k triangles; performance scaled lin-
early with triangle and pixel counts. Our initial IZB prototype ex-
hibited 100:1 performance variations between certain frames during
even basic interactions.

Pi

Vi

Li
P

1 P2 P3

P4 P5 P6

P7 P8 P9

Figure 2: (Left) A familiar mapping between view vector ~Vi, inter-
section point Pi, and light direction ~Li. Shadow maps discretize
light-space, so shadow queries return the nearest neighbor rather
than the true visibility along ~Li. (Right) Irregular z-buffer shadows
store all sample points Pi, allowing exact shadows. Rather than
storing a single depth, as in shadow maps, IZBs store all points
that fall in a texel as a linked list.

However, their problems lie entirely in the performance domain.
While Johnson et al. [2005] explored performance characteristics
on their proposed hardware, IZB’s characteristics on modern GPUs
are largely unexplored. By carefully identifying and removing key
bottlenecks, we designed an efficient implementation achievable to-
day. The 2.9 million triangle hairball (in Figure 7) required 12.6
seconds in Aila and Laine’s [2004] work, 1.5 seconds in our first
prototype, and 13.8 milliseconds today.

3 Irregular Z-Buffer Review

Before describing our system, we briefly review irregular z-buffer
shadows. IZBs aim to avoid shadow map aliasing from mismatches
between eye- and light-space sampling locations. Shadow maps use
a regular grid of samples in both eye- and light-space, but finding a
robust bijection between samples in these spaces remains unsolved.
By allowing light-space samples to occur irregularly, IZB shadows
easily pair samples and eliminate aliasing.

By construction, an IZB bijectively maps each pixel to one sample
in light-space; the pixel represents ray ~Vi hitting geometry at Pi

and a corresponding light sample represents ray ~Li from Pi to the
light (see Figure 2). Shadow map queries along ~Li return the near-
est neighbor sample on the texel grid; irregular z-buffers store all
samples, generating a unique visibility for each pixel.

In theory, constructing an irregular z-buffer shadow map works
identically to regular shadow maps: one “rasterizes” occluders over
the irregular set of light rays ~Li, finding the closest triangle along
each ~Li. If the depth of the closest triangle lies between the light
and Pi we know that sample is shadowed.

Since modern GPUs rasterize only over regular samples, we need
to store our irregular samples in a grid. A grid-of-lists structure
achieves this. The irregular z-buffer is a grid of light-space head
pointers, each pointing to a linked list containing irregular samples
falling within the grid cell. Intuitively, this is identical to a shadow
map except texels stores a pointer rather than a depth. Since sam-
ples can lie anywhere within a texel, conservative rasterization is
required; triangles must test samples for occlusion if they cover any
portion of a texel (not just the center, as in traditional rasterization).

Rasterizing over irregular samples requires knowing where they oc-
cur; IZBs require a prepass to identify sample locations. Game en-
gines commonly use an eye-space z-prepass to reduce overshading.

This prepass provides exactly the needed data: locations of visible
pixels requiring shadow queries. To identify IZB samples we run
a compute pass over this z-buffer, transforming pixels into light-
space (via the shadow map transformation), and inserting them into
their corresponding light-space lists (see Figure 2).

Pseudocode describing this process follows:

High Level Pseudocode: Irregular Z-Buffer Shadows

// Step 1: Identify locations we need to shadow
G(x, y)← RenderGBufferFromEye()

// Step 2: Add these pixels into the light-space data structure (our IZB)
for pixel p ∈ G(x, y) do

lsTexelp ← ShadowMapTransform[GetEyeSpacePos(p)]
izbNodep ← CreateIZBNode[p]
AddNodeToLightSpaceList[lsTexelp, izbNodep]

end for

// Step 3: Determine shadows; test each triangle with pixels in lists it covers
for triangle t ∈ SceneTriangles do

for fragment f ∈ ConservativelyRasterizeInLightSpace(t) do
lsTexelf ← FragmentLocationInRasterGrid[f]
TraversePixelListFromStep2TestingIfTriangleShadows[lsTexelf]

end for
end for

Initially this seems complex, but is a relatively simple modification
to shadow mapping, essentially swapping the order of light-space
rasterization and sample projection:

High Level Pseudocode: Shadow Maps

// Step 1: Render shadow map in light-space
for triangle t ∈ SceneTriangles do

for fragment f ∈ RasterizeInLightSpace(t) do
lsTexelf ← FragmentLocationInRasterGrid[f]
if depthf < Z(lsTexelf) then Z(lsTexelf)← depthf

end for
end for

// Step 2: Query shadow map for each pixel
for pixel p ∈ FinalRender do

lsTexelp ← ShadowMapTransform[GetEyeSpacePos(p)]
isShadowed← (DistanceToLight(p) > Z(lsTexelp) ? true : false)

end for

3.1 Performance Considerations

As with ray tracing, the key unit of work is ray-triangle intersec-
tions. These are spawned as a triangle fragment traverses its list of
potentially occluded samples (in pseudocode, step 3); each sample
represents a ray (from Pi along ~Li) that is tested for intersection
with the rasterized triangle. Other steps have only small perfor-
mance costs: a z-prepass typically already occurs, and simple ir-
regular z-buffer creation requires under a millisecond.

Simplistically, the algorithmic complexity is O(N) for N ray-
triangle visibility tests. ButN depends on triangle count and screen
resolution; pixels create IZB nodes, and triangles generate light-
space fragments that traverse lists of pixels. So N = tf 〈lizb〉 for
tf the number of light-space triangle fragments and 〈lizb〉 the aver-
age IZB list length traversed by each fragment.

This means performance depends on total ray-triangle tests, num-
ber of light-space fragments, and the average length of IZB node
lists. Additionally, traversing IZB lists causes GPU underutiliza-
tion if list lengths vary significantly between threads, so reducing
variance of lizb improves performance for GPU implementations.
These factors interact in non-intuitive ways. Increasing light-space
grid resolution reduces average list length by distributing samples
over larger numbers of texels but also increases the number of light-
space fragments generated by rasterization. At first glance the util-

µQuad

Figure 3: (Left) A standard shadow ray query. (Center) Creating
fragment shadow frusta (at black point): project pixel footprint to
the fragment tangent plane; this “micro-quad” (µQuad) becomes
the shadow frustum base. (Right) Intersection tests project each tri-
angle edge to the tangent plane (i.e., identifying the shadow quad
intersection), and use the projected edge to index a lookup table
providing visibility for each sample. Visibility sample locations
(gray points) are developer specified during LUT construction.

ity of such a change is unclear, and prior work rarely explored such
tradeoffs.

4 Antialiasing via Frustum-Triangle Tests

Like ray tracing, IZB shadows provide pixel accurate shadows.
Naive extensions achieve subpixel accuracy via multiple sampling
(e.g., shooting additional rays or using multiple IZB samples per
pixel), but increase cost linearly with sample count.

Alternatively a beam tracing approach [Heckbert and Hanrahan
1984] can provide analytic subpixel visibility. Interactive work of-
ten replaces beams with packet tracing [Boulos et al. 2007], tiled
rasterization, or raster stamps to preserve spatial coherence while
using discrete samples. Numerous soft shadow algorithms use these
methods, including for ray traced shadows [Overbeck et al. 2007],
bitmask soft shadows [Schwarz and Stamminger 2007], and even
IZB-based soft shadows [Sintorn et al. 2008].

To achieve antialised shadows we flip these beams around, essen-
tially tracing a frustum from the point light back to the geometry
(see Figure 3). This is similar to Pan et al.’s [2009] approach,
though we directly compute intersections in world space rather than
projecting back to the image plane.

We achieve antialised shadows by replacing the ray-triangle inter-
sections in IZB shadows with frustum-triangle intersections. Effi-
cient frustum intersection occurs per pixel as follows:

• Construct a µQuad representing the pixel projection onto the
tangent plane (see Figure 3).

• Treat each edge of the occluder triangle independently. An
edge plus the light define a shadow quad. The three shadow
quads plus the triangle plane bound its shadow volume.

• Project each shadow quad to the tangent plane, determining
which half-plane is shadowed. Use projection to lookup a 32-
sample visibility bitmask from a lookup table. Combine the
edge results with a binary AND to create a visibility bitmask
representing which pixel subsamples this triangle occludes.

As this intersection represents the inner loop, tight optimization is
vital for good performance. We provide an example GLSL imple-
mentation as supplementary material.

Visibility mask on eye space grid

IZB nodes: stored on eye space grid

IZB head pointers: on

light space grid

Eye space z-prepass + triangle soup

Irregular Z-bu�er data structureIrregular Z-bu�er input Irregular Z-bu�er output

IZB creation: apply shadow map transform

to project pixels to light space. Add each

pixel to corresponding light space list.

Rasterize triangles in light space. Traverse list

in each covered texel. Test shadow visibility for

each listed pixel. Update shadow visibility mask. Light-space sample positions

Figure 4: An overview of our irregular z-buffer implementation. We require an eye-space z-buffer plus triangle geometry as input; each pixel
location is transformed to light-space and added to the projected texel’s linked list. Triangles are rasterized over this light-space grid; each
fragment traverses its list and tests listed pixels for occlusion. When tests identify occlusion, the pixels’ visibility mask is updated. The final
render pass consumes these visibility masks to correctly shadow pixels. (Right) An example visualization of irregular light-space samples.

5 System Overview

As discussed in Section 3, irregular z-buffer shadows have three
distinct phases: creating the IZB data structure, spawning triangle
occlusion tests via light-space rasterization, and rendering a final
shadowed image. Figure 4 visually outlines this process, describing
inputs, outputs, and the light-space data structure. We implement
these steps with six passes: an eye-space z-prepass, bounding the
scene’s visible regions, creating the irregular z-buffer, a light-space
culling prepass, spawning triangle visibility tests, and the final ren-
der. These are outlined in greater detail below.

5.1 Eye-Space Z-Prepass

Create an irregular z-buffer requires knowing which samples to add.
Modern rendering engines often use a z-only prepass to facilitate
culling; this pass provides the required information. Our implemen-
tation simultaneously creates a G-buffer, used during our deferred
final render phase.

Single sample shadows only require fragment depths. To perform
frustum intersection for antialised shadows, we add three floats
to the G-buffer describing the µQuad projection onto the tangent
plane; this accelerates visibility tests, but could be recomputed from
the fragment normal if G-buffer space is tight.

5.2 Scene Bounds

As with shadow maps, a priori knowing the correct settings for the
light frustum is challenging. To avoid poorly bounding the scene,
we recompute the light’s projection matrix each frame to tightly
bound geometry visible in the z-prepass. We use a persistent thread
compute shader over the z-buffer from Section 5.1.

5.3 Creating the Irregular Z-Buffer

We walk through the eye-space z-buffer, transforming each pixel
into light-space and inserting it into the appropriate texel’s linked
list, as described in Section 3.

Using multiple visibility samples per pixel may also require mul-
tiple IZB nodes per pixel, in theory up to one node per visibility
sample. Unlike a point query, our µQuad may project to multi-
ple light-space texels; triangles touching any of these texels could
shadow the pixel. Section 6.1 introduces an approximation using

at most eight (and averaging two) IZB nodes per pixel with little
quality impact.

5.4 Light-Space Culling Prepass

In Section 5.5 we spawn visibility tests via conservative rasteriza-
tion. The GPU’s early-z hardware can accelerate this process by
culling triangle fragments covering empty pixel lists or falling be-
hind the furthest list node. Intuitively, this provides frustum culling
based on actual pixel geometry.

To use early-z hardware, we need a light-space z-buffer. This could
be generated as a side effect in Section 5.3. But as that pass runs
in eye-space, standard raster operations cannot output light-space
depth. Given the GPU’s opaque depth format, we had difficulty
using global memory writes to create a z-buffer usable by the early-
z hardware. Our prepass essentially creates a stencil: setting depth
to 0 in texels with empty lists and the distance to the furthest IZB
node elsewhere. Except in our most trivial scenes, using hardware
z-cull provides a substantial speedup (between 30 and 50%).

5.5 Spawning Triangle Visibility Tests

Spawning and performing visibility tests represents our system’s
major cost. We conservatively rasterize triangles over a light-space
grid (shown in Figure 4). Each texel stores a list of pixels poten-
tially occluded by triangles overlapping it. Conservative rasteriza-
tion is required, as pixels may lie anywhere within the volume rep-
resented by a texel; triangles partially covering a texel may occlude
an arbitrary subset of its list.

Each fragment traverses the entire texel list. During traversal we
load each listed pixel, perform a visibility test, and atomically OR
the result into the pixel’s visibility mask.

A key bottleneck stems from thread divergence at this step; since
lists have variable length, some threads wait on adjacent threads.
For naive implementations, this wait can be extreme; in certain
views we observed 1000:1 variations between adjacent list lengths.

5.6 Final Render

Section 5.5 performs shadow tests and stores results in a per-pixel
visibility mask. Our final render pass loads from the G-buffer (Sec-
tion 5.1) and this mask and performs Phong shading modulated by
the shadow mask.

Figure 5: (Left) As a fragment’s tangent plane changes orientation,
µQuads elongate along only one axis (the other dimension depends
on screen resolution). (Right) This suggests sampling them one di-
mensionally; we add from one to eight samples to the IZB depend-
ing on orientation.

6 Implementation Details

Section 5 provides a high-level description of our system, but key
aspects deserve greater explanation. First, we discuss how multi-
sample shadows change our data structure. Then we explore ef-
ficient layouts for the irregular z-buffer data structure and outline
some smaller optimizations that significantly impact performance.

6.1 Simplifying IZBs for Multi-Sample Shadows

Moving from 1 to 32 spp shadows complicates our algorithm.
The key point is light-space rasterization needs to spawn frustum-
triangle tests (described in Section 4) for any triangle occluding a
pixel. Turning that around, a µQuad projects to a variable number
of light-space texels; its pixel must be added to those texels’ lists.
One expensive approach rasterizes µQuads in light-space during
IZB construction. Another method adds all 32 per pixel visibility
samples to the IZB. An optimization can skip duplicate insertions
within a µQuad. We initially prototyped this sample-based inser-
tion, though it often adds 8 or more IZB nodes per pixel.

Observing µQuad geometry suggests a simple approximation to im-
prove performance. µQuads enlarge along eye-space silhouettes as
~N · ~V→0 (see Figure 5). By construction they only elongate in
depth, remaining constant width regardless of surface orientation.
We treat them as 1-dimensional samples. As µQuads elongate we
insert IZB samples along the pixel’s view ray (the µQuad center),
using between 1 and 8 samples.

This creates an approximate irregular z-buffer. As µQuads enlarge
we miss inserting some nodes, introducing light leaks for small
distant occluders falling between samples (i.e., that fail to spawn
needed frustum-triangle tests). Examples of light leaking are pro-
vided in our supplementary materials. To reduce these missed tests,
triangles can be over-conservatively rasterized. Our implementa-
tion rasterizes light-space triangles with a 1 texel dilation (rather
than a half texel in typical conservative rasterization), ensuring tri-
angles touch more sample locations.

Given the algorithmic complexity in Section 3.1, this tradeoff ini-
tially seems questionable. Reducing the number of IZB nodes di-
rectly decreases average list length 〈lizb〉, but enlarging conserva-
tive raster dilation increases triangle fragment count tf by a smaller
amount. Our approximate insertion averages two IZB nodes per
pixel compared to eight with the exact approach, for a 4× reduc-
tion in 〈lizb〉; increasing triangle dilation from 0.5 to 1.0 pixels only
increases tf 6–40%, giving a large net speedup.

6.2 Data Structure and Memory Layout

In any complex data structure, it is worth considering the best layout
for efficient construction and traversal. We initially prototyped a
simple 2D grid of linked lists, allocating nodes from a global node
pool (see Figure 2). Each list node contained two entries: a next
pointer and a G-buffer index (to fetch pixel data). But this structure
needs two synchronizations per insertion: a global atomic to find a
free node and a per texel atomic to update the head pointer.

We tried compacting our lists, similar to Sintorn et al.’s [2008] vari-
able length arrays. This reduces memory consumption by elimi-
nating next pointers. But our experiments consistently showed a
performance drop of exactly the compaction cost. We also tried
sorting lists by distance to the light; this reduced performance by
roughly the sort cost. This suggests either traversal order has little
impact or we sufficiently load the GPU to hide traversal latency.

But cutting node size is appealing, so we instead eliminated the G-
buffer index. By preallocating a screen-space grid of nodes, the
node address implicitly provides its G-buffer index (see Figure 4);
each node just contains a next pointer. Besides cutting list size in
half, this provides other advantages. Inserting list nodes no longer
requires global synchronization, as we directly map pixels to node
IDs. This roughly halves build cost and removes a memory indirec-
tion during list traversal; as addresses directly map to pixels, next
pointers provide information to load the next node and G-buffer
data simultaneously.

For 32 spp shadows we continue using this method, storing up to 8
nodes per pixel. Since we allocate 8 nodes per pixel in advance, this
wastes some memory (roughly doubling the memory of a linked-list
structure). But we felt the improved performance was worth this
moderate memory increase.

6.3 Light-Space Texture Resolution

As in shadow maps, selecting the correct light-space resolution is
important. Unlike shadow maps, resolution does not impact quality
but it does affect performance.

Consider IZB’s O(tf 〈lizb〉) complexity. Halving resolution grows
average list lengths 4× while lowering triangle fragments 4×, sug-
gesting resolution minimally impacts performance. But conserva-
tive raster also generates more fragments, and this effect grows for
small triangles and low resolutions. Larger resolutions increase
memory consumption of the head pointer texture, though the num-
ber of IZB nodes is largely invariant with light-space resolution.

Considering our goals, we want neither high 〈lizb〉 nor lots of frag-
ments testing empty lists. This suggests closely matching light-
space and image resolutions. Early tests showed a 20482 head tex-
ture worked well for all scenes at 1080p, though later experiments
(Figure 9) suggest the sweet spot varies from 14002 to 25002.

6.4 Matching Sampling Rates: Cascades

Ideally, we would match eye- and light-space sampling 1:1 so each
triangle fragment spawns exactly one visibility test. Shadow map
research has explored this sampling problem for decades, suggest-
ing various methods to approach our ideal sampling: perspective
[Stamminger and Drettakis 2002], logarithmic [Lloyd et al. 2008],
cascaded [Lloyd et al. 2006], and sample distribution shadow maps
(SDSMs) [Lauritzen et al. 2011] all improve sampling. For our pur-
poses, perspective shadow maps have hard-to-control singularities
and logarithmic approaches require non-linear rasterization. How-
ever, cascades give better sampling with manageable overhead and
SDSMs provide automatic partitioning.

Adding cascades is straightforward, though it affects multiple steps
of our algorithm. Our extents pass not only bounds the entire scene,
but also splits it into multiple cascades with Lauritzen et al.’s [2011]
logarithmic partitioning and individually bounds each cascade.

We generate a separate IZB for each cascade. Creation of cascaded
IZBs for single sample shadows easily occurs in parallel (cascades
contain unique pixels). Cascades for multisample shadows must
overlap slightly to avoid light leaks along boundaries; we serially
generate these IZBs prior to use but expect a careful implementation
could insert samples in multiple cascades in parallel.

Light-space rasterization needs to occur over each IZB to accumu-
late full visibility. Currently we naively use one render pass per cas-
cade. Culling geometry separately for each light frustum or using
a single render pass to route primitives to the appropriate cascade
would both improve performance.

Except for complex models that naturally fit in one frustum (e.g.,
the hairball), cascades’ significant reduction in GPU divergence
pays for the overhead of rasterizing geometry multiple times. Di-
vergence data with and without cascades is provided as supplemen-
tary material.

6.5 ~N · ~L Culling

Standard lighting models trivially shadow pixels with ~N · ~L ≤ 0.
Not adding these pixels to the IZB reduces 〈lizb〉. Since the ~N · ~L
term already shadows these pixels, their visibility mask can be left
fully lit. This avoids a common problem along light silhouettes
where geometric and shading normals provide different shadow
terms. This culling consistently improves performance 10-15%.

6.6 Early Out: IZB Node Removal

While testing visibility, a pixel often becomes fully occluded. Tri-
angles rasterized later in the frame can have no additional impact,
so spawning additional frustum-triangle tests is wasteful. This sug-
gests removing occluded pixels from IZB lists (analogous to ray
tracing with “any hit” rays).

Importantly, node removal requires no atomic operations. Race
conditions can occur, but at worst cause extra visibility tests on
already-occluded pixels (after which we retry removal). Node re-
moval provides a 10-15% performance win despite additional logic
and memory operations in the inner traversal loop.

6.7 Memory Synchronization: Unchanged Masks

Visibility tests are inexpensive relative to a GPU’s maximum the-
oretical performance. Memory latency, throughput, and synchro-
nization thus prove key bottlenecks. One synchronization point
is a pixel’s visibility mask; multiple triangles testing visibility at
the same pixel need to atomically combine results to avoid races.
To reduce contention, mask updates should only occur if a trian-
gle changes the existing visibility. This requires loading the prior
mask, but the avoided contention provides up to a 14% speed boost.

6.8 Latency Hiding: Software Pipelining

When traversing a list of IZB nodes, the inner loop: loads the next
node, loads its pixel data, performs a visibility test, and updates the
visibility mask. This forms a dependency chain, with long memory
latencies between tasks. The GPU may be unable to hide all these
latencies. Fortunately we can apply software pipelining, loading
the next node and computing G-buffer coordinates in the prior loop

Figure 6: The 12.3 million triangle UNC Powerplant model run-
ning at 3840× 2160 in under 140 ms for 32 sample per pixel shad-
ows. We zoom twice to highlight the shadow quality.

iteration. This hides latency and improves speed 5-15%. Pushing
visibility mask updates to the next iteration may be a further win.

7 Results and Discussion

Our system uses OpenGL 4.4 and has been tested on various
NVIDIA GPUs and an AMD Radeon 290X. Timings come from
a GeForce GTX 980. Some results use two extra NVIDIA ex-
tensions: NV conservative raster and NV geometry shader pass
through. These results are identified as “GM204 optimized.”

Figures 1, 6 and 7 show our test scenes. Table 1 gives performance
breakdowns using consistent rendering parameters; these do not
provide optimal performance in all scenes, but provide reasonably
high performance across our test suite.

Table 1 shows that bounding scene extents, priming the z-buffer for
culling, and final render all have consistent costs. Computing scene
extents requires a pass over all G-buffer samples running Lauritzen
et al.’s [2011] logarithmic partitioning to delineate cascades; this
cost depends on screen resolution. Section 5.4 notes priming light-
space culling should be unnecessary; however it just requires a blit
to our light-space z-buffer. Our final render loads the G-buffer and
visibility mask and applies a simple shading model.

IZB creation costs vary depending on how many nodes are added to
our linked lists and how much atomic contention occurs. Incoherent
geometry (hairball and tentacles) and complex tessellated models
(GeeBee and powerplant) exhibit slightly lower performance. For
1 sample shadows, we add at most one IZB node per pixel. 32 sam-
ple shadows insert roughly twice as many nodes (see Section 6.1),
increasing atomic contention. Still, IZB creation costs remain re-
markably consistent across all our test scenes.

Our major cost is light-space rasterization (Section 5.5), which tests
visibility via frustum- or ray-triangle intersections. Theoretically,
cost varies linearly with additional frustum-triangle tests, though
Table 1 shows this correspondence breaks in practice as GPU uti-
lization varies between scenes. Tests of peak throughput show our
GeForce GTX 980 achieves up to 7 million frustum tests per mil-
lisecond (Table 2). While we fall short of this ideal, geometry rep-
resentative of game assets achieves up to 30% this limit. Given the
extra memory latency and logic overhead in our list traversal, we
feel this is quite good. More complex models achieve a much lower
throughput; we expect this is due to reduced culling efficiency for
small triangles (full pixel occlusions occur less frequently and tri-
angles grow by a larger percent with conservative raster).

For single sample shadows, our GM204-optimized code (using

Figure 7: Scenes used to test our system include: Chalmers Villa, GeeBee Plane, Hairball, Epic Citadel, Bungie Terrain, Bungie Building.
Timings give total frame time using four 20482 cascades, rendered at 1920× 1080. Some scenes courtesy Epic Games and Bungie, Inc.

Scene and Individual Step Times for 32 spp (1 spp), in milliseconds Total Render Light-Space Tri-Pixel Avg. Tests Per
Triangle Count G-Buf Z-Extent Create Z-Cull Raster Tris Final Time (msec) Tri Frags, Vis Tests, Tri Frag Pixel
(sorted by complxeity) Bounds IZB Setup Over IZB Render millions millions
Chalmers Villa, 89 k 0.7 (0.4) 0.8 (0.7) 1.7 (0.6) 1.1 (1.1) 2.9 (0.8) 0.3 (0.2) 7.6 (3.7) 4.6 (1.3) 6.8 (1.5) 1.5 (1.2) 4.1 (0.9)
Bungie Building, 255 k 1.2 (0.6) 0.8 (0.8) 1.7 (0.6) 1.1 (1.1) 7.5 (3.3) 0.4 (0.2) 12.8 (6.6) 19.3 (9.7) 19.2 (8.8) 1.0 (0.9) 9.3 (4.3)
Epic Citadel, 374 k 1.0 (0.5) 0.7 (0.7) 1.6 (0.6) 1.1 (1.1) 7.3 (2.6) 0.3 (0.2) 12.0 (5.7) 10.1 (5.8) 13.8 (7.1) 1.4 (1.2) 8.6 (4.4)
Chalmers Citadel, 613 k 1.0 (0.6) 0.7 (0.7) 1.6 (0.6) 1.1 (1.1) 11.8 (4.0) 0.4 (0.2) 16.6 (7.2) 14.1 (7.4) 20.2 (8.8) 1.4 (1.2) 11.2 (4.9)
Bungie Terrain, 1.5 M 1.9 (1.0) 0.8 (0.8) 1.9 (0.7) 1.1 (1.1) 19.5 (6.4) 0.4 (0.2) 25.6 (10.2) 39.7 (16.0) 38.8 (14.8) 1.0 (0.9) 18.7 (7.1)
Hairball, 2.9 M 2.6 (1.5) 0.7 (0.7) 1.9 (0.7) 1.1 (1.1) 51.7 (9.6) 0.3 (0.2) 58.3 (13.8) 77.2 (16.5) 24.2 (3.9) 0.3 (0.2) 15.0 (2.4)
Tentacles, 3.8 M 1.8 (1.2) 0.7 (0.7) 1.7 (0.6) 1.1 (1.1) 55.0 (14.6) 0.3 (0.2) 70.5 (18.4) 7.1 (1.6) 7.9 (1.5) 1.1 (0.9) 6.8 (1.4)
GeeBee Plane, 11.7 M 6.3 (5.1) 0.7 (0.7) 1.9 (0.6) 1.1 (1.1) 152.6 (38.1) 0.3 (0.2) 162.9 (45.9) 51.5 (11.9) 58.7 (9.4) 1.1 (0.8) 38.4 (6.1)
UNC Powerplant, 12.3 M 3.8 (3.3) 0.8 (0.8) 2.1 (0.7) 1.1 (1.1) 67.4 (14.0) 0.4 (0.2) 75.6 (20.1) 11.4 (4.7) 20.4 (4.6) 1.8 (1.0) 10.3 (2.3)

Table 1: Performance breakdown for individual algorithmic steps for 32 spp (and 1 spp) IZB hard shadows. To allow comparison all scenes
use identical settings: 1920× 1080 resolution, 4 cascades each containing 20482 lists of IZB nodes, and using all our optimizations. Single
sample shadows use our GM204-optimized code path. We provide explicit measures of the work done, including light-space fragment counts
(after culling) and total frustum-triangle (or ray-triangle) tests performed. Based on those counts, we provide averages for visibility tests
performed per light-space fragment and per shaded pixel in the final rendering.

Speed of Light Tests at 32 spp Our Best
Scene Tri-Frustum Speed of Tests / ms Perf

Tests Light (ms) (Tests / ms)
Chalmers Villa 6.8 M 1.4 4.9 M 2.3 M
Bungie Building 20.6 M 6.1 3.4 M 2.6 M
Epic Citadel 19.9 M 2.9 6.9 M 1.9 M
Chalmers Citadel 31.8 M 4.8 6.6 M 1.7 M
Bungie Terrain 40.7 M 9.6 4.2 M 2.0 M
Hairball 83.0 M 29.8 2.8 M 0.5 M
Tentacles 9.6 M 2.7 3.6 M 0.3 M
UNC Powerplant 37.6 M 9.5 4.0 M 0.5 M
Average 4.6 M 1.5 M

Table 2: Our “speed-of-light” tests. A prepass computes and stores
a list of all necessary frustum-triangle visibility tests. We then
launch a compute pass performing one test per thread, fully utiliz-
ing the GPU without divergence. For representative game scenes,
our system achieves throughput up to 75% the speed-of-light.

hardware conservative raster and NVIDIA’s fast geometry shader)
provides up to a 3.5× win over an equivalent software path. For
example, our software light-space rasterization takes 7.2, 52, and
115 ms for the Chalmers Citadel, Tentacles, and GeeBee models.
Hardware conservative rasterization using an extra half-pixel dila-

G Bu�er Scene Extents

IZB Creation Cull Setup

IZB Raster Final Render

m
il

li
s

e
c

o
n

d
s

25

20

15

10

5

0
0 36001800900 2700

frame in animation

m
il

li
s

e
c

o
n

d
s

Final Render

IZB Raster

Cull Setup

IZB Creation

Scene Extents

G Bu�er

35

30

25

20

15

10

5

0

3840 x 2160

2560 x 1440

1920 x 1080

1600 x 900

1366 x 768

1280 x 720

960 x 540

800 x 450

screen resolution

Figure 8: Performance variation in the Chalmers Citadel (left) with
varying render resolution and (right) over a 3600 frame animation.

tion would enable these optimizations for our 32-sample shadows,
and we expect a similar performance benefit. Roughly half this
performance win comes from hardware conservative raster, which
generates fewer fragments than our software implementation (using
[Hasselgren et al. 2005]).

Interestingly, Figure 8 shows non-linear performance scaling with
screen resolution. Scaling from 1080p to 2160p roughly reduces
performance by 2× rather than the expected 4×. This likely stems
from our culling, specifically the node removal in Section 6.6,
which reduces the penalty for longer linked lists. As fully occluded

m
il

li
se

co
n

d
s

200

160

120

80

40

0

m
il

li
se

co
n

d
s

0

10

40

20

30

32 spp Shadows 1 spp Shadows

light space resolution light space resolution
256 2564096 40961024 10242048 3072 30722048

Chalmers Villa Bungie Building

TentaclesBungie Terrain

Epic Citadel

Powerplant

Chalmers Citadel

GeeBee Plane

Hairball

Figure 9: Performance variation for (left) 32 spp and (right) 1 spp
shadows with varying cascade resolutions. Timings represent just
the light-space rasterization step, using 4 cascades with resolution
between 2562 and 40962.

pixels are quickly eliminated, increasing resolution along epipolar
lines affects performance sublinearly.

Figure 9 tracks performance under varying light-space resolution.
Larger resolutions distribute IZB nodes among more lists (reduc-
ing average list length), but also cause rasterization to emit more
fragments. For single sample shadows, these effects largely cancel
out and performance remains consistent for sufficiently large cas-
cades. For multisample shadows, higher resolutions cause µQuads
to project to more texels (requiring additional IZB nodes); this dis-
tinctly lowers performance at higher resolutions. The sweet spot
ranges from 14002 to 25002, and in moderately complex scenes
performance varies only slightly through this range.

Consider shadow map aliasing. A shadow map texel aliases when
it projects to multiple pixels. By construction, an irregular z-buffer
lists these same pixels in a single texel. As sampling mismatches
increase, shadow maps alias further and IZB lists lengthen. For
standard shadow map problem cases, e.g., the shadowed ground
plane at sunset, our lists can become quite large. Increasing reso-
lution and better matching via warping or cascades addresses this
problem by splitting these long lists.

One can view an IZB as a ray-triangle acceleration structure, sim-
ilar to a ray tracer’s bounding volume hierarchy. Given these in-
tersections are the key cost, we asked how many tests our system
performs compared to a ray tracer. We implemented our frustum-
tracing algorithm in a beam tracer using state-of-the-art acceler-
ation structures [Aila et al. 2013] and compared the number of
frustum-triangle tests required. Figure 10 compares these numbers
with our results from Table 1. Our system tested 0.3× to 2.6× as
many triangles per pixel as the ray tracer, surprisingly well given
our IZB construction costs only 2 ms. For validation, we compare
quality with a multisample OptiX ray tracer and show costs over an
animated sequence.

7.1 Specific Comparisons to Prior Work

Beyond ray tracers, our work shares similarities with other tech-
niques. Lecocq et al. [2014] and Sen et al. [2003] augment a shadow
map with geometry, which can give subpixel accurate shadows. But
they fail in complex texels when multiple triangles or silhouettes in-
tersect. Irregular z-buffers seamlessly handle these cases.

Despite the name, we share similarities with per-triangle shadow
volumes [Sintorn et al. 2011; Sintorn et al. 2014]; our light-space
rasterization and traversal essentially spawns per-triangle shadow
volumes, but Sintorn et al.’s data structure more closely resembles
Aila and Laine’s [2004] space partitioning. Because they use GPU

compute, they implement a complex space partitioning to achieve
culling similar to our hardware-accelerated z-cull.

Key differences from prior irregular z-buffers include: our use
of shadow map techniques like cascades to improve performance,
culling via hardware z-cull, IZB node removals to avoid redundant
tests on shadowed pixels, and an efficient way to build and traverse
an IZB for multisample shadows.

8 Conclusions and Future Work

We introduced a system designed to render subpixel accurate shad-
ows. This system runs in real-time for modern game content and
interactively for more complex CAD models, in both cases at HD
or higher resolutions. Adding multiple samples for subpixel visi-
bility only costs slightly more than a single sample.

While we designed primarily for accuracy, we introduced one op-
timization for multisample shadows that can introduce light leaks
when small triangles shadow pixels with ~N · ~V near 0. We believe
a modified light space parameterization could eliminate this leak-
ing, but developers needing quality could skip this optimization.

We hope our work spurs further exploration into real-time analytic
shadow algorithms. While we feel our performance impressive, a
number of improvements still remain: a more programmable depth
test could enable better culling during light space rasterization, ap-
plying conservative rasterization to all triangles seems wasteful (but
identifying silhouettes robustly is challenging), and extensions to
soft shadows increase culling challenges.

Acknowledgments

Thanks to Bungie, Epic Games, and Erik Sintorn for generously
sharing models and other assets. Many others at NVIDIA provided
helpful suggestions, discussion, and brainstorming throughout this
project, including: Anjul Patney, Henry Moreton, Cyril Crassin,
Dave Luebke, Marco Salvi, Eric Enderton, and Craig Kolb.

References

AILA, T., AND LAINE, S. 2004. Alias-free shadow maps. In Proc.
Eurographics Symposium on Rendering, 161–166.

AILA, T., KARRAS, T., AND LAINE, S. 2013. On quality met-
rics of bounding volume hierarchies. In Proc. High-Performance
Graphics, 101–107.

ANNEN, T., MERTENS, T., SEIDEL, H.-P., FLERACKERS, E.,
AND KAUTZ, J. 2008. Exponential shadow maps. In Proc.
Graphics Interface, 155–161.

ARVO, J. 2007. Alias-free shadow maps using graphics hardware.
Journal of Graphics Tools 12, 1, 47–59.

BOULOS, S., EDWARDS, D., LACEWELL, J. D., KNISS, J.,
KAUTZ, J., WALD, I., AND SHIRLEY, P. 2007. Packet-based
Whitted and Distribution Ray Tracing. In Proc. Graphics Inter-
face, 177–184.

CARPENTER, L. 1984. The a-buffer, an antialiased hidden surface
method. In Proceedings of SIGGRAPH, 103–108.

CROW, F. 1977. Shadow algorithms for computer graphics. In
Proceedings of SIGGRAPH, 242–248.

DONNELLY, W., AND LAURITZEN, A. 2006. Variance shadow
maps. In Symposium on Interactive 3D Graphics and Games,
161–165.

Frustum Traced IZB

OptiX

OptiX Prime

500

400

300

200

100

0
0 360180

frame in animation

m
il

li
s

e
c

o
n

d
s

Ray Tracing Numbers 32 spp IZB
Scene BVH Nodes Tri-Frag Avg Tests Avg Tests

Traversed Vis Tests Per Pixel Per Pixel
Chalmers Villa 11.0 M 10.7 M 14.6 4.1
Bungie Building 15.1 M 14.6 M 8.8 9.3
Epic Citadel 14.3 M 14.1 M 9.3 8.6
Chalmers Citadel 11.6 M 11.3 M 7.3 11.2
Bungie Terrain 12.9 M 12.4 M 7.1 18.7

Figure 10: (Left) Compare our speed over an animation with a 32 spp OptiX ray tracer (on a Quadro K6000) and a quality comparison from
one frame. (Right) The number of frustum-triangle intersections in a beam tracer (with a state-of-the-art BVH) compared with our system.

EISEMANN, E., SCHWARZ, M., ASSARSSON, U., AND WIMMER,
M. 2011. Real-Time Shadows. A. K. Peters, Ltd.

FERNANDO, R., FERNANDEZ, S., BALA, K., AND GREENBERG,
D. 2001. Adaptive shadow maps. In Proceedings of SIGGRAPH,
387–390.

HASSELGREN, J., AKENINE-MOLLER, T., AND OHLSSON, L.
2005. GPU Gems 2. Addison-Wesley, ch. Conservative Ras-
terization, 677–690.

HECKBERT, P. S., AND HANRAHAN, P. 1984. Beam tracing
polygonal objects. In Proceedings of SIGGRAPH, 119–127.

JOHNSON, G. S., LEE, J., BURNS, C. A., AND MARK, W. R.
2005. The irregular z-buffer: Hardware acceleration for irregular
data structures. ACM Trans. Graph. 24, 4 (Oct.), 1462–1482.

LAURITZEN, A., SALVI, M., AND LEFOHN, A. 2011. Sample dis-
tribution shadow maps. In Symposium on Interactive 3D Graph-
ics and Games, ACM, New York, NY, USA, I3D ’11, 97–102.

LECOCQ, P., MARVIE, J.-E., SOURIMANT, G., AND GAUTRON,
P. 2014. Sub-pixel shadow mapping. In Proceedings of the
Symposium on Interactive 3D Graphics and Games, 103–110.

LEE, W.-J., SHIN, Y., LEE, J., KIM, J.-W., NAH, J.-H., JUNG,
S., LEE, S., PARK, H.-S., AND HAN, T.-D. 2013. Sgrt: A
mobile gpu architecture for real-time ray tracing. In Proc. High-
Performance Graphics, 109–119.

LLOYD, D. B., WENDT, J., GOVINDARAJU, N., AND
MANOCHA, D. 2004. CC shadow volumes. In Proc. Euro-
graphics Symposium on Rendering, 197–206.

LLOYD, D. B., TUFT, D., YOON, S.-E., AND MANOCHA, D.
2006. Warping and partitioning for low error shadow maps. In
Proc. Eurographics Symposium on Rendering, 215–226.

LLOYD, D. B., GOVINDARAJU, N. K., QUAMMEN, C., MOL-
NAR, S. E., AND MANOCHA, D. 2008. Logarithmic perspective
shadow maps. ACM Trans. Graph. 27, 4, 106:1–106:32.

MCGUIRE, M., HUGHES, J. F., EGAN, K., KILGARD, M., AND
EVERITT, C. 2003. Fast, practical and robust shadows. Tech.
rep., NVIDIA Corporation, Austin, TX, Nov.

MITTRING, M., 2014. Real-time ray traced shadows. http://
kosmokleaner.wordpress.com/2014/09/26/.

OVERBECK, R., RAMAMOORTHI, R., AND MARK, W. R. 2007.
A real-time beam tracer with application to exact soft shadows.
In Proc. Eurographics Symposium on Rendering, 85–98.

PAN, M., WANG, R., CHEN, W., ZHOU, K., AND BAO, H. 2009.
Fast, sub-pixel antialiased shadow maps. Computer Graphics
Forum 28, 7, 1927–1934.

REEVES, W., SALESIN, D., AND COOK, R. 1987. Rendering
antialiased shadows with depth maps. In Proceedings of SIG-
GRAPH, 283–291.

SCHWARZ, M., AND STAMMINGER, M. 2007. Bitmask soft shad-
ows. Computer Graphics Forum 26, 3, 515–524.

SEN, P., CAMMARANO, M., AND HANRAHAN, P. 2003. Shadow
silhouette maps. ACM Trans. Graph. 22, 3 (July), 521–526.

SINTORN, E., EISEMANN, E., AND ASSARSSON, U. 2008. Sam-
ple based visibility for soft shadows using alias-free shadow
maps. Computer Graphics Forum 27, 4, 1285–1292.

SINTORN, E., OLSSON, O., AND ASSARSSON, U. 2011. An
efficient alias-free shadow algorithm for opaque and transparent
objects using per-triangle shadow volumes. ACM Trans. Graph.
30, 6, 153:1–153:10.

SINTORN, E., KÄMPE, V., OLSSON, O., AND ASSARSSON, U.
2014. Per-triangle shadow volumes using a view-sample cluster
hierarchy. In Proceedings of the Symposium on Interactive 3D
Graphics and Games, 111–118.

STAMMINGER, M., AND DRETTAKIS, G. 2002. Perspective
shadow maps. In Proceedings of SIGGRAPH, 557–562.

WHITTED, T. 1980. An improved illumination model for shaded
display. Communications of the ACM 23, 6 (June), 343–349.

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces.
In Proceedings of SIGGRAPH, 270–274.

WOO, A., AND POULIN, P. 2012. Shadow Algorithms Data Miner.
A. K. Peters/CRC Press.

YANG, J. C., HENSLEY, J., GRÜN, H., AND THIBIEROZ, N.
2010. Real-time concurrent linked list construction on the gpu.
Computer Graphics Forum 29, 4, 1297–1304.

http://kosmokleaner.wordpress.com/2014/09/26/
http://kosmokleaner.wordpress.com/2014/09/26/

