
Copyright © 2005 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for commercial advantage and that copies bear this notice and the full citation on the

first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail

permissions@acm.org.

© 2005 ACM 1-59593-201-1/05/0010 $5.00

Interactive Image-Space Refraction of Nearby Geometry

Chris Wyman∗

University of Iowa

Abstract

Interactive applications often strive for realism, but framer-
ate constraints usually limit realistic effects to those that run
efficiently in graphics hardware. One effect largely ignored in
interactive applications is refraction. We build upon a sim-
ple, image-space approach to refraction [Wyman 2005] that
easily runs on modern graphics cards. This image-space ap-
proach requires two passes on a GPU, and allows refraction
of distant environments through two interfaces. Our work
explores extensions allowing the refraction of nearby opaque
objects, at the cost of one additional pass to render nearby
geometry to texture and a more complex fragment shader for
computing refracted color. Like all image-based algorithms,
aliasing can occur in certain circumstances, especially when
a few texels are magnified to cover a sizable portion of screen
space. However, our plausible refractions should suffice for
many applications.

CR Categories: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism

Keywords: interactive rendering, refraction, hardware

1 Introduction

While photorealism is beneficial in many scenarios, for many
applications interactivity must take precedence over realism.
Thus many researchers have approximated realistic effects to
optimize for speed. Increasing computational power through
parallelism [Wald et al. 2002] allows interactive realism with
standard ray and path tracing techniques, yet the high cost
for such parallelism often prohibits its use in mainstream ap-
plications. Recently, researchers have developed hardware-
accelerated or hardware-assisted approximations for shad-
ows [Assarsson and Akenine-Möller 2003; Chan and Durand
2003; Kautz et al. 2004; Wyman and Hansen 2003], caus-
tics [Wand and Straßer 2003; Purcell et al. 2003], global il-
lumination [Ng et al. 2004; Sloan et al. 2002], reflection [Ofek
and Rappoport 1999], and basic refraction [Guy and Soler
2004; Schmidt 2003; Ts’o and Barsky 1987].

This paper expands upon recent work on refraction
[Wyman 2005], which eliminated the restriction limiting re-
fraction to a single interface in interactive applications. This
proves important, since few situations arise in scenes where
refraction occurs at only one surface. Generally people look
through dielectric objects (e.g., a magnifying glass), rather
than into them (e.g., a lake). However, this image-space

∗E-mail: cwyman@cs.uiowa.edu

Figure 1: This 250,000 polygon glass dragon can refract
nearby geometry at interactive rates, including complex ob-
jects such as a second copy of the dragon.

technique is limited to dielectric objects inside distant envi-
ronments. This paper explores a number of approaches to
view opaque, nearby objects refracted through such dielec-
tric geometry (see Figure 1).

Various ways to approximate refraction through a sin-
gle surface have been proposed. One technique utilizes the
programmable features of GPUs to compute refracted or
pseudo-refracted directions through visible geometry. Us-
ing the refracted direction, a color is determined by ei-
ther indexing into a distant environment map [Lindholm
et al. 2001] or a perturbed texture describing nearby geom-
etry [Oliveira 2000; Sousa 2005]. Schmidt [2003] used a geo-
metric technique, similar to the reflection work of Ofek and
Rappoport [1999]. Ofek’s method exhibits problems with re-
flections off concave objects, but Schmidt’s approach shows
similar problems for refractions through either concave or
convex objects. Accurately connecting the refracted virtual
vertices generally proves difficult, frequently leading to un-
realistic results.

A few researchers have considered multi-sided refraction.
Guy and Soler [2004] interactively rendered simple convex
gemstones. Using plane-based refraction, they compute re-
fracted vertices (similar to Diefenbach and Badler [1997])
and update the resulting facet tree each frame using GPU-
based shaders. Such per-facet planar refractions may not
scale well to more complex objects, and are limited to ob-
jects with a single normal per facet.

Kay and Greenberg [1979] introduced a ”thickness” pa-
rameter to account for two-sided refractive objects. Their
approach works for objects of uniform thickness, such as a
glass window pane, but geometry often varies considerably in
thickness. Diefenbach and Badler [1997] used multiple passes
to render planar reflections, refractions, and shadows inter-
actively on graphics hardware. Ohbuchi [2003] suggested a
vertex tracing preprocess to approximate interactive refrac-
tions on a prototype multimedia processor.

Recent work [Wyman 2005] uses a two-pass image-space
approach to render approximate, two-interface refractions
interactively on modern graphics hardware. Unfortunately
that technique only handles refractions of distance environ-
ments. This work looks to eliminate that restriction.

Heidrich et al. [1999] represented geometry as a light field

205

Index of
refraction: ni

P1

Index of
refraction: nt

~N2

~T2

~T4

P3

~V

θi

θt

P2 d ~N

~N1

d~V

~T1

P4

Figure 2: Vector ~V hits the surface at P1 and refracts in di-

rection ~T1 based upon the incident angle θi with the normal
~N1. Physically accurate computations lead to further refrac-
tions at P2, P3, and P4. Our method only refracts twice,
approximating the location of P2 using distances d ~N and d~V .

and examined compression schemes to fit such dense sam-
plings in memory for interactive rendering. Still, the high
memory overhead makes light fields unattractive for many
applications. Hakura and Snyder [2001] accelerated ray trac-
ing by utilizing the GPU as a secondary processor. Unfor-
tunately their technique does not produce real-time results,
even using both the CPU and GPU solely for rendering.

2 Basic Refraction

Given basic information about the geometry at hitpoint P1

(see Figure 2), refracted ray behavior following Snell’s Law
can be computed:

ni sin θi = nt sin θt,

where ni and nt are the indices of refraction for the incident
and transmission media. θi describes the angle between the

incident vector ~V and the surface normal ~N1, and θt gives

the angle between the transmitted vector ~T1 and − ~N1.
Computing refractions through complex objects is trivial

with a ray tracer, as rays are independently intersected with
the geometry, and refracted rays recursively apply Snell’s
Law at each additional intersection. Unfortunately, in a
GPU’s stream processing paradigm performing independent
recursive intersections for different pixels proves expensive.
Consider the example in Figure 2. Rasterization determines
~V , P1, and ~N1, and a simple fragment shader can compute
~T1. However, precisely determining point P2 on a GPU re-
quires resorting to accelerated ray-based approaches [Purcell
et al. 2003]. Since ray tracing techniques for GPUs are still
relatively slow, multiple-bounce, ray traced refractions for
complex polygonal objects are not interactive.

3 Review of Image-Space Refraction

Instead of using the GPU for ray tracing, an image-space
approach (e.g., [Wyman 2005]) approximates the refraction
with values easily computable via rasterization.

Consider the information necessary for refraction (see Fig-

ure 2). At each point Pj an incident direction ~Ij , a normal
~Nj , and the indices of refraction ni and nt are required to

apply Snell’s Law. ~Ij is always known; at depth j = 1, ~Ij is

the viewing vector ~V . At higher depths, ~Ij is the refraction

Figure 3: Pass results for basic image-space refraction.
(Left) The distance to back faces, (center) normals at back
faces, and (right) the final result.

direction ~Tj−1 from the previous interface. The trick on the

GPU is quickly finding subsequent normals (~N2, ~N3, etc.)

Obviously a normal ~Nj varies depending on the correspond-

ing surface point ~Pj , so a GPU-based refraction approxima-
tion could first approximate the locations of the secondary
refractions (P̃j , j > 1), then use these locations to determine
the normals.

Wyman [2005] showed how to compute a single secondary
refraction at P2 by approximating the distance ‖P2 − P1‖
via interpolation between two easily computable distances
d~V and d ~N . This interpolated distance d̃ is then used to
approximate P2 as:

P̃2 = P1 + d̃ ~T1 ≈ P1 + ‖P2 − P1‖~T1 = P2.

We use the same interpolation for d̃ in this paper, where:

d̃ =
θt

θi

d~V +

„

1 −
θt

θi

«

d ~N .

After approximating P̃2, a normal can be found by project-
ing to screen space and indexing into a texture containing
the normals at backfacing surfaces.

The basic image-space approach can thus be performed in
three basic steps (see Figure 3):

Precompute Precompute d ~N at each vertex.
First pass Render normals and depths of backfacing

surfaces to a buffer.
Final pass Draw front faces:

A. Compute ~T1 based on ~V , P1, and ~N1.
B. Compute d~V between front & back faces.
C. Interpolate between d~V and precomputed d ~N .

D. Compute P̃2 = P1 + d̃ ~T1.

E. Project P̃2 to buffer from 1st pass to find ~N2.
F. Refract and return color from environment.

The two major restrictions of this approach are that ob-
jects can only refract infinite environment maps, not nearby
objects, and that refractions are only allowed at two inter-
faces. The next section describes new work that extends this
technique to refract nearby objects.

4 Refraction of Nearby Geometry

Consider a refractor with nearby geometry, as in Figure 4.
Using the image-space technique from above, we have an
approximate exitant location P̃2 and an approximate exitant

206

d′

~T2

P̃2

Pgeom

Geometry
Nearby Refractor

Figure 4: After using previous work to compute P̃2 and ~T2,

finding Pgeom, where ~T2 ray hits nearby geometry, simply
requires approximating d′.

refraction vector ~T2. As with computing P̃2, the trick to
locating Pgeom on the nearby geometry is approximating

the distance d′, where d′ = ‖Pgeom − P̃2‖.
Once again, ray tracing easily solves this problem – simply

intersect ~T2 with all other geometry in the scene. Unfortu-
nately, such intersections have significant cost in complex,
dynamic scenes. Our goal was to find a simple image-based
way to approximate this intersection. The rest of this sec-
tion describes three techniques we explored for intersecting
nearby geometry to find a refracted color.

4.1 The Kay-Greenberg Technique

Kay and Greenberg [1979] introduced a refraction technique
for rasterization-based graphics systems. Their method as-
sumes relatively thin surfaces with a constant, predefined
thickness and assumes rays travel parallel to the viewing di-
rection when not inside the refractive media.

While the image-space refraction eliminates the first re-
striction, a simple approach for handling nearby geometry
keeps the second assumption. In practice, this works as fol-
lows: before the final refraction pass from Section 3, draw
all the non-refractive nearby geometry, as seen from the eye,
to a texture. After computing P̃2 in the final pass, project
it into screen-space using the standard OpenGL projection
matrix, and use the coordinates to index into this texture.

If the texture indicates that no geometry is visible, use ~T2

to index into the background environment map.
While this technique is simple to implement and requires

little additional overhead, it gives relatively unsatisfactory
results, as seen in Figure 5. In fact, objects rarely look more
than slightly refractive, as only geometry directly behind the
refractor can be visible in the refraction.

4.2 The Ray-Plane Intersection Technique

While ray tracing is too costly to interactively intersect the
refracted scene geometry, we can rely on ray tracing for in-
spiration. For instance, if scene geometry consists of a few
planar surfaces, we can use exact ray-plane intersection on a
per-pixel level. For instance, in Figure 5, the non-refractive
geometry consists of only two planes. Explicitly intersect-
ing the two planes containing the color chart and the wood
texture only requires 15 extra pixel shader instructions. As
shown, this method compares favorably to a ray traced so-
lution. Furthermore, a few additional planes can easily be
added using a pixel shader to loop over a list of planes.

In practice, the ray-plane method works as follows: before
the final refraction pass, draw all the nearby geometry to
a texture (the NG texture). On the CPU, determine the

Figure 6: (Left) Distortion occurs when using the ray-plane
approach. (Center) Some rays completely miss the dragon
with the iterative method introduced by Ohbuchi [Ohbuchi
2003]. (Right) Our technique seeds the iterative method with
a better location, significantly reducing the problem.

Plane Representing
Geometry

Nearby Geometry

Refractor

Eye

Pplane

Pgeom

Pplane

∆depth

depth(P̃2)

Pnew

depth(Pplane)

P̃2

Figure 7: (Left) In the ray-plane technique, rays leaving the
refractor intersect the approximation plane at Pplane instead
of the geometry at Pgeom. Using Pplane instead of Pgeom

to index into the NG texture may generate incorrect colors.
(Right) Instead of using Pplane to find a color, the NG tex-
ture’s z-buffer value can be used to compute ∆depth, which
is used to iteratively generate a new intersection Pnew.

equations for a small number of planes describing the scene.

After computing ~T2 in the final render pass, intersect the ray

P̃2 + t~T2 with each of the precomputed planes. Project the
nearest intersection point into the NG texture and return
the color stored (or the background).

While at first this technique seems limited to planar ob-
jects, complex geometry lying relatively far from the refrac-
tor can reasonably be approximated using a plane. This
may seem unintuitive, but the plane intersection is simply
used to determine an index into the NG texture. The geom-
etry rendered into that texture can be arbitrary, as seen in
Figure 6. However, representing complex geometry with a
plane causes in distortion due to inaccurate distances to the
refractor.

4.3 The Iterative Lookup Technique

When using ray-plane intersection to approximate complex
geometry, difficulty finding the correct intersection location
on the plane causes this distortion. Rays often intersect the
object (Pgeom) either in front or behind the representative
plane (Pplane). In such cases, the texel accessed by project-
ing Pplane can be wrong (see Figure 7).

Instead of using the ray’s intersection with the plane to
approximate the color, Pplane can instead be used to iter-
atively approximate the ray-object intersection Pnew. In-
stead of directly using the color in the NG texture, as in
Section 4.2, a z-buffer associated with the texture can ap-

207

Figure 5: Compare image-based refraction of nearby geometry using (left) the Kay-Greenberg technique and (center) the ray-
plane intersection technique with (right) a ray traced image.

Pplane

P̃2

Pgeom

Figure 8: (Left) Using the iterative technique, Pplane may
incorrectly indicate some refraction rays completely miss
nearby geometry. (Right) Indexing into the NG texture at
multiple locations along the refracted ray and iterating from
the best point significantly reduces the problem. The ”best”
sample is where red and blue points are closest.

proximate the distance from P̃2 to a better approximation of
the intersection, Pnew. This process can be repeated, using
Pnew to compute a further approximation P′

new, etc. Typi-
cally fewer than five iterations are necessary. This basic idea
was suggested by Ohbuchi [2003].

The problem with the iterative technique, as proposed by
Ohbuchi and described above, is that the initial intersec-

tion Pplane may falsely indicate that ~T2 misses all nearby
geometry and instead hits the background! In that case,
the solution gives erroneous results (see Figures 6 and 8)
characterized by refracted geometry partially disappearing.
Only when Pplane and background geometry project to the
same NG texel can the refraction see nearby geometry. This
is similar to the limitation of the Kay-Greenberg approach,
where P̃2 and the background geometry need to project to
the same texel.

To reduce the problem, we propose indexing into the NG
texture’s z-buffer multiple times and using the point with
the closest z-value as input to the iterative technique. This

is equivalent to intersecting the refracted ray ~T2 with mul-
tiple planes perpendicular to the viewing direction, project-
ing each intersection into the NG texture, and choosing the
texel whose depth best corresponds to the actual distance
(see Figure 8, where the best point minimizes the distance
between red and blue points). Specifically, if dfar is the dis-

tance to the far plane, we compute P̃2 + αi
~T2 for a number

of values 0 ≤ αi ≤ dfar, and project the results into the NG
texture’s z-buffer.

The number of values αi used to find a good seed for the

Figure 9: (Left) Geometry seen through Buddha. (Cen-
ter) Feature size guarantees for visibility of nearby geome-
try. White pixels guarantee all features greater than 10 pix-
els. (Right) 71% of pixels, in blue, guarantee visibility for
refracted geometry features at least 3 pixels large.

iterative approach determines the feature size of nearby ge-
ometry guaranteed to be captured with our technique. In
our experiments, seven intersections were required to insure
all features larger than ten pixels were visible at 5122 reso-
lutions (as in the accompanying video). For 71% of pixels,
seven intersections capture all features larger than three pix-

els, as seen in Figure 9. The screen-space distance ~T2 trav-
els between P̃2 and the far plane (divided by the number
of intersections αi) determines the guaranteed feature size.

Obviously, when ~T2 varies significantly from the view direc-
tion this distance (and hence the error) increases. However,
the areas of greatest error roughly correspond to areas of
total internal reflection, where inherently noisy refractions
will mask artifacts.

The refraction algorithm from Section 3 is then updated
to handle nearby geometry as follows:

Precompute Precompute d ~N at each vertex.
First pass Render normals and depths at backfacing

surfaces to a buffer (Fig. 3).
2nd pass Draw nearby geometry to texture (Fig. 10).
Final pass Draw front faces:

A-F. As before, through computation of P̃2 and ~T2.

G. Compute P̃2 + αi
~T2 for various αi.

H. Project intersections into NG texture z-buffer.
I. Use best intersection to find Pnew, then iterate.
J. Project iterated location to find color.

208

Figure 10: (Left) The texture of nearby geometry. (Center)
The NG texture’s z-buffer. (Right) The final result.

2-Sided With Nearby With Nearby

Refraction Geometry Geometry

at 10242 at 10242 at 5122

Buddha 53.3 fps

Buddha & Dragon 10.7 fps 15.6 fps

Buddha w/2 planes 20.3 fps 45.7 fps

Dragon 20.7 fps

Dragon w/2 planes 8.5 fps 17.8 fps

Sphere 164.4 fps

Sphere & Dragon 16.9 fps 21.3 fps

Sphere w/1 plane 61.0 fps 212.8 fps

Venus 37.9 fps

Venus & Dragon 9.4 fps 12.6 fps

Table 1: Framerate comparisons for scenes of varying com-
plexity using our iterative approach.

5 Implementation and Results

We implemented our work in OpenGL on an AGP 8x nVidia
GeForce 6800 with 128 MB memory, using Cg to generate
standard ARB vertex and fragment shaders. The algorithm
requires three passes. The first pass renders the distance
to back facing polygons and stores their normals, as in Fig-
ure 3. The second pass renders nearby geometry to a tex-
ture, as in Figure 10. The final pass renders front facing
polygons and computes refractions with a fragment shader.
Our final pass vertex shader compiles to 27 ARB assembler
instructions and the fragment shader requires 226 instruc-
tions. This compares to 23 and 102 instructions for image-
space refraction without nearby geometry.

Running on a 3.0 GHz Pentium 4 with 2 GB of mem-
ory, we get the running times shown in Table 1. Our code
is unoptimized, yet we achieve good speeds for even com-
plex models. At least for complex geometry, the bottleneck
is not our refraction shader, as rendering complex objects
in the background significantly reduces the framerate. The
Buddha, Venus, and Dragon models we use have 50k, 100k,
and 250k polygons (respectively). Note that some timings
are for scenes in the accompanying video but not depicted
here.

Unless otherwise specified, all refractors have an index of
refraction of 1.2, except for the spheres, which have an index
of 1.5. Figure 1 shows our iterative approach on the complex
dragon model, with both simple and complex background
geometry. The left image in Figure 1 shows the same scene
as in Figure 5. Our results remain comparable with ray
traced results as the index of refraction changes, as seen
in Figure 11. While the errors of our technique increase
with higher indices of refraction, the largest occur in noisy-
appearing regions of the refraction, particularly areas of total
internal reflection. In such regions, viewers may not notice
even sizable discrepancies from real refractions.

Figure 13: Errors arising in image-space refraction. (Left)
Aliasing from a combination of d~V discretization and a low
resolution NG texture. (Top) The artifact visible in the high-
lighted region occurs because the NG texture (bottom) does
not store information about changing visibility, particularly
in the highlighted region where some refraction rays should
pass between the objects.

Figure 14: Errors arising in image-space refraction. (Left)
Incorrect handling of total internal reflection. (Right) Alias-

ing problems become more noticeable as ~T2 diverges further
from the view vector. In the sphere, aliasing becomes visible
near the silhouettes.

6 Limitations

The four major limitations of image-space refraction are:
only two refractive interfaces, incorrect handling of total in-
ternal reflection, aliasing, and occasional incorrect visibility
for nearby geometry due to a single NG texture. The first
two limitations are inherited from previous work and could
perhaps improve with future work.

Aliasing arises in numerous steps during refraction, as vir-
tually all data are stored inside discretized textures. For
instance, even though the ray-plane method computes an
exact ray-plane intersection in the pixel shader, the results
differ slightly from ray traced results due to aliasing during

computation of P̃2 and ~T2. Figure 12 shows where these
errors occur.

Aliasing also occurs when indexing into the NG texture
to determine which nearby objects are visible. The itera-
tive process can multiply the problem, particularly in areas
where a small object is magnified to a significant size, as in
Figure 13. However even in less magnified areas, aliasing be-

comes more noticeable as ~T2 varies further from the viewing
vector. This is evident near the silhouettes of the sphere in
Figure 14.

Another problem that occurs, particularly when multiple

209

Figure 11: A 250k polygon dragon behind a 50k polygon glass Buddha. The index of refraction increases from left: 1.05, 1.1,
1.2, and 1.4. Compare our iterative method (top) to ray tracing (bottom).

Figure 12: Aliasing errors from (a) the original image-space refraction technique. Refracted rays ~T2 computed in (c) image-
space versus rays computed by (d) ray tracing. The visualized angular differences (b) show largest errors in or near regions of

total internal reflection (e). Compare the exitant positions P̃2 computed in (g) image-space versus exact positions from (h) ray
tracing. The difference image (f) is scaled such that white indicates a distance error 1

2
the width of the dragon. Most regions

without total internal reflection have errors of a few pixels or less.

210

objects approach the refractor, arises from the geometry tex-
ture lacking complete visibility information (see Figure 13).
This points out an implicit assumption in our technique:
that visibility between refracted geometry does not change
over the surface of the refractor.

7 Conclusions and Future Work

This paper examined extensions to a simple, image-space re-
fraction approach that allow refraction of nearby geometry
in addition to distant environments. These techniques run
interactively on current GPUs, even for quite complex mod-
els, and results of the iterative technique compare favorably
with ray traced results.

The problems of our method include that refractions are
limited to two interfaces. However, for many applications
two interfaces are sufficient to generate plausible results.
Aliasing can poses problems on a number of levels. Most no-
ticeably, aliasing occurs because nearby geometry is stored
in a texture; a refractor can magnify the texels to cover
many pixels. Finally, since nearby geometry is stored in a
single texture, visibility changes over the refractor’s surface
are always not correctly handled.

Recent work [Donnelly 2005] has examined ways of imple-
menting per-pixel displacement mapping in hardware. Inter-
secting refracted rays with nearby geometry is quite similar
to per-pixel displacement mapping, only with dynamic dis-
placement maps. Future work allowing for dynamic chang-
ing displacement maps could potentially increase the speed
and accuracy of image-space refraction.

Finally, caustics arise from light focused off reflective or
refractive objects. A number of interactive caustic tech-
niques are based on previous work for one-interface refrac-
tion. We plan on examining future work extending our tech-
nique to generate interactive image-space caustics through
two or more interfaces.

References

Assarsson, U., and Akenine-Möller, T. 2003. A geometry-
based soft shadow volume algorithm using graphics hardware.
ACM Transactions on Graphics 22, 3 (July), 511–520.

Chan, E., and Durand, F. 2003. Rendering fake soft shadows
with smoothies. In Proceedings of the Eurographics Symposium
on Rendering, 208–218.

Diefenbach, P., and Badler, N. 1997. Multi-pass pipeline
rendering: Realism for dynamic environments. In Proceedings
of the Symposium on Interactive 3D Graphics, 59–70.

Donnelly, W. 2005. GPU Gems 2. Addison-Wesley, March,
ch. Per-Pixel Displacement Mapping with Distance Functions,
123–136.

Guy, S., and Soler, C. 2004. Graphics gems revisited: Fast and
physically-based rendering of gemstones. ACM Transactions
on Graphics 23, 3, 231–238.

Hakura, Z. S., and Snyder, J. M. 2001. Realistic reflections and
refractions on graphics hardware with hybrid rendering and
layered environment maps. In Proceedings of the Eurographics
Rendering Workshop, 289–300.

Heidrich, W., Lensch, H., Cohen, M. F., and Seidel, H.-

P. 1999. Light field techniques for reflections and refractions.
In Proceedings of the Eurographics Rendering Workshop, 187–
196.

Kautz, J., Lehtinen, J., and Aila, T. 2004. Hemispherical ras-
terization for self-shadowing of dynamic objects. In Proceedings
of the Eurographics Symposium on Rendering, 179–184.

Kay, D. S., and Greenberg, D. 1979. Transparency for com-
puter synthesized images. In Proceedings of SIGGRAPH, 158–
164.

Lindholm, E., Kligard, M. J., and Moreton, H. 2001. A user-
programmable vertex engine. In Proceedings of SIGGRAPH,
149–158.

Ng, R., Ramamoorthi, R., and Hanrahan, P. 2004. Triplet
product wavelet integrals for all-frequency relighting. ACM
Transactions on Graphics 23, 3, 477–487.

Ofek, E., and Rappoport, A. 1999. Interactive reflections on
curved objects. In Proceedings of SIGGRAPH, 333–342.

Ohbuchi, E. 2003. A real-time refraction renderer for volume
objects using a polygon-rendering scheme. In Proceedings of
Computer Graphics International, 190–195.

Oliveira, G., 2000. Refractive texture map-
ping, part two. Gamasutra, November.
http://www.gamasutra/features/20001117/oliveira 01.htm.

Purcell, T., Donner, C., Cammarano, M., Jensen, H. W.,

and Hanrahan, P. 2003. Photon mapping on pro-
grammable graphics hardware. In Proceedings of the SIG-
GRAPH/Eurographics Conference on Graphics Hardware, 41–
50.

Schmidt, C. M. 2003. Simulating Refraction Using Geometric
Transforms. Master’s thesis, Computer Science Department,
University of Utah.

Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precom-
puted radiance transfer for real-time rendering in dynamic,
low-frequency lighting environments. ACM Transactions on
Graphics 21, 3, 527–536.

Sousa, T. 2005. GPU Gems 2. Addison-Wesley, March,
ch. Generic Refraction Simulation, 295–305.

Ts’o, P. Y., and Barsky, B. A. 1987. Modeling and render-
ing waves: wave-tracing using beta-splines and reflective and
refractive texture mapping. ACM Trans. Graph. 6, 3, 191–214.

Wald, I., Kollig, T., Benthin, C., Keller, A., and

Slusallek, P. 2002. Interactive global illumination using
fast ray tracing. In Proceedings of the Eurographics Rendering
Workshop, 15–24.

Wand, M., and Straßer, W. 2003. Real-time caustics. Com-
puter Graphics Forum 22, 3, 611–620.

Wyman, C., and Hansen, C. 2003. Penumbra maps: Approx-
imate soft shadows in real-time. In Proceedings of the Euro-
graphics Symposium on Rendering, 202–207.

Wyman, C. 2005. An approximate image-space approach for
interactive refraction. ACM Transactions on Graphics 24, 3
(July), 1050–1053.

211

